mean T; ®(r) = T—T,, excess temperature of the probe relative to the initial temperature T(; kga, amplifi-
cation coefficient of RA; R,, standard resistance in the bridge; R, and RZO, resistances of the potential divider
at the RA input; V, voltage at the output of RA; D and L, diameter and length of the probe; 1/¢, thermal resis-
tance; v =0.577215, Euler's constant; and = = 3.1415926. Indices: 0, at the initial temperature T; s, referring
to the sensor; c, to the calibrated sensor; and cz, to the contact zone.
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NUMERICAL SOLUTION OF THE INVERSE HEAT-
CONDUCTION PROBLEM FOR DETERMINING
THERMAL CONSTANTS

N. I. Nikitenko and Yu. M. Kolodnyi UDC 536.24.01

We investigate the solution of the inverse heat-conduction problem for a cylinder, based
on a series expansion of a thermal constant in powers of temperature, and the determina-
tion of the series coefficients by a direct-search method.

The majority of experimental methods of determination of the thermal constants of solid materials is
based on the solution of the linear or nonlinear heat equation with some specific boundary conditions [1]. The
use of these methods is brought about by the necessity of ensuring a stationary thermal regime, and mono-
tonic or instantaneous heating to the required temperature which presents appreciable difficulties. In recent
years it has been preferred to determine the thermal constants by the numerical solution of the inverse heat-
conduction problem [2-7]. These methods do not as a rule, impose any restriction on the change of the bound-
ary conditions. The physical parameter which appears in the heat equation is found in this case from the known
boundary conditions and from the temperature at interior points.

In the present work we investigate a numerical solution of the inverse heat-conduction problem which can
be immediately used for the experimental determination of the thermal conductivity or some other constant
which appears in the heat equation. The solution is based on a series expansion of the required thermal con-
stantina seriesin powers of temperature and on the determination of the series coefficients by a specially
derived method of direct search. We note that this method can be used for the solution of any one-dimensional
heat-conduction problem with coefficients of interest, with any boundary conditions.

The problem of determination of a thermal constant from the experimentally measured values of temper-
ature at two points of a sufficiently long, hollow, or dense cylinder can be represented by the following equa~
tions:

o 1 9 oty - '
Cp—a;——T-a‘(fA‘*(;), r0<r<R1 0<T<TFw (1)
tr, 0)=o(r), )
(R, T = (1), @)
ot (ry, ) _ 0. : » (4)
or ’
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These equations contain two unknown functions: temperature t(r, 1), and one of the thermal coefficients ¢, p,
and A. To complete the system of Eqs. (1)-(4) it is necessary to postulate the temperature at one point
of the region, for example,

Hro ©) =%y (V). (5)

The function §,(7) is used in the search of the required coefficient. To be specific, we shall take this coeffi-
cient to be the thermal conductivity A. The quantity A is determined by successive approximations. If the
function Ag(t) in the s~th approximation is known, we can find from the solution of Egs. (1)-(4) the value of
the discrete analog of the temperature function ug in the s-th approximation, This is a correctly formulated
direct problem and it can be solved, for example, by using the difference scheme. On.the lattice

o= rodmhy me——1,0, 1, ..., M h=R—T0.

T,=nl,n=0,1, .. .,N,Nz—IE

it has the form

n l . . n R
attt =l —27— [(/.,’,'1 + Ami ) (Umst — Um) — (Am

n I m
AR — ,} 2?” (Uhsr — o), 6)
m=0,1..., M—1
Up =@ (ry), 42" = u?", W = B (1,0)- @

To determine the variations of the function A which decreases the difference between the given temperature
t(ry,Tn) = ¥;(rn) and the temperature found from the solutions of Eqs. (6) and (7) at the points of the interval
0<7<TR WE expand the function A in a Taylor series in powers of u in the following fashion:

A'(v).zao (I—A—t)+aov(1——7\v7\)‘-;-aavz(l—Ait) L, (8)

where
= u’é—l(ro, 0), At == 1(r,, TF)—t(fo, 0).

The expansion (8) is convenient because the value of X at the right end of the interval [0, 7] for v = At
depends only on the parameter a,. The expansion of the thermal coefficient in powers of temperature reflects
the nature of the problem since the analysis of experimental data shows that the temperature dependence of the
thermal coefficients of various materials is usually reasonably well described by second- or third-order poly-
‘nomials. In the numerical solution we shall keep a finite number of terms; this number will be denoted by J +1.
The coefficients of the series a;, j =0, 1, ..., J are determined from the condition that in J + 1 points of the
interval 0 = 7 = Ty the functions t(r;, Tn) and u," practically coincide. This condition will be taken in the form

£(ry T o) — ud |<5 9
t(rO' n) i

where & is usually taken equal to 10~%, Each of the coefficients aj, j =0, 1, ..., d corresponds to a point Tj

of the interval [0, Tp]. The coefficient ¢, corresponds to 7 =7F, and the remaining coefficients correspond

to interior points of the interval [0, 7,]. The calculation of the coefficients aj is carried out by successive
approximations in cycles, starting from the first.and ending with the approximation a; j &) when the coefficient
and the corresponding point satisfy the expression (9). The value of the coefficient aj ) of the previous cycle

is the first approximation a; i) of the next cycle. The next approximation is carried out when the coefficients
@gy Ay +ves Aj—y and the correspondmg points satisfy (9). Consequently, each approximation for the coefficients
a; denotes the start of a new cycle of successive approximations for the coefficients ay, ay, ..., @j-y- If aj k)
is the value of the coefficient aj in the k-th approximation, the value of aj (k-+1) is given by

10)

: N
Qj oy = Bjan — [E(rg, T) — Uoa)]
jty
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where u, (k)j is the value of the discrete function calculated immediately before the (k+1)-th approxi;mationfor '
the coefficient aj, and Wj (k) is the absolute value of the rate of change of the function uy with respect to the -
parameter a; for the given cycle. It is determined after the second approximation aj(2) and in the subsequent
approximations of the cycle it can-be assumed to remain constant:

i
W, — Uiy — Ud(k—1) , k> 1 {11)

! jry — Ljny
For the determination of aj,) the rate was taken from the previous cycle.

To check the above numerical method we carried out the following numerical experiment. We solved
“the direct heat-conduction problem for the thermal conductivity A =1 + byt + b2t2 + byt3, by =0-1, and 6 =1,
2, 3 with the initial values:
t(R, ©) = b, + byt 4 bgw?, t(x, 0) = by, 12)
cp="by by=const, i=1,2,....

As a result, we determine the temperature values t(r;, 7d) for 71 = TP, 2/3, TR, and 14 Tp Whichare used asthe
input data for the determination of the function A by solving the inverse hedt-conduction problem with the unique-
ness conditions (12). The function A was determined in the form of a series (8) in which we kept the first two

or three terms.

The results of the calculations carried out in a sufficiently large range of b; and 7 give the following
indications. To determine the thermal conductivity At (ry, 7)) at 7 = T 2/3 T, and 1 TR Ol A Iattice with M =
10 we needed 5-7 min of computer time on the BESM-4M computer, indicating the simplicity and efficiency of
the method.

The error A decreases somewhat with shorter time interval Tpe The value of TR is conveniently chosen
from the expression

Atg

= —=F —=0.05-0.1.
cp (R—r)*

FOI:

Keeping the third term in the series (8) which corresponds to the point T, 2/3 -rF) improves the accuracy of the
calculation only if the input data error, does not exceed some given value P*, The value of P* depends on by
and b,. For example, for b, =b, =b, with b =0.05, and b; =0, we obtain P* =0.05%; for b = 0,1 we have P* =
0.25%; for b = 0.3, P* =1%, and for b = 0.5, P* =2,5%. When solving the direct and inverse problems on the
same lattice with no perturbation to the input data, the error in thermal conductivity does not exceed 0.01%.

If the values t(ry, Tp)or t(ry, 1/3'1-}?) are given within the error Pg, the error in the thermal conductivity P, is
P, = 0.6 P;, provided other data are known accurately. If the values t(r,, 7) are known with the same accuracy
(and there is some systematic error), we have Py = 0.3P;. If the perturbation of the temperature t(R, ) at
the outer boundary of the region is of the form A =t(R, 1)bgsin (byr), by, = 1~100, the error in the thermal con~
ductivity is P = by, When all input data were known with error P, the error P, differed only liftle from P.

LITERATURE CITED

1. A. V. Lykov (editor), The Determination of Thermal Conductivity and Thermal Diffusivity [in Russian],
~ Energiya, Moscow (1973).

2, E. T. Artiklaev and N. P. Leonchuk, Zh. Vychisl, Mat. Mat. Fiz., 7, No. 1 (1967).

3. V. M., Yudin, Tr. Tsentr. Aérogidrodin. Inst., No. 1267 (1970).

4. Yu. V. Polezhaev, Yu. G. Narozhnyi, and V. E, Safonov, Teplofiz. Vys. Temp., 11, No. 3 (1973).

5. Yu. G. Narozhnyi, Yu. V., Polezhaev, and V. N, Kirilov, Inzh.-Fiz. Zh., 29, Ne. 1 (1975).

6. K. G. Ometchenko and V. G. Pchelkina, Inzh,-Fiz. Zh., 29, No, 1 (1975).

7. E. A. Artyukhin, Inzh.-Fiz. Zh., 29, No. 1 (1975).

1463



